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ABSTRACT  
 

Mobile Agent "MA" paradigm is said to give better performance advantages over other paradigms due to its 

features especially in the network and the internet applications. To integrate mobile agents into such applications, 

fault tolerant ability of an agent is one of the most important issues. In this paper we propose the Fault Tolerant 

Mobile Agent execution System “FTMAS” mathematical model. The paper states and defines the migration time, the 

Round trip time, the transfer time and the system throughput. They are defined relative to 3 performance metrics: the 

average connectivity of the network, the agent size and the probability of failure. The mathematical model of the 

FTMAS is stated as a promising model in the fault tolerant field of the Mobile Agent execution. In addition, a novel 

failure classification is stated to solve agent faults efficiently. 
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1. INTRODUCTION 

 

Modern applications can be no longer satisfied by 

the use of the traditional distributed computing 

paradigms. These paradigms are no longer adequate 

for the networking and information system 

applications. MAs are a type of software agent that 

migrates from one place to another with its data, state 

and code. In contrast to client-server paradigm, the 

mobile agent paradigm views computer-to-computer 

communication in both directions. During the agent 

itinerary, the agent may visit several places according 

to the tasks assigned for each agent. Mobile agent can 

suffer from different breakpoints during its execution. 

while failures should not prevent the mobile agent 

from continuing its itinerary to achieve its goals.  

While a mobile agent is executing on a host hi, a 

failure of hi might interrupt the execution of the agent 

ai and prevent any progress of this mobile agent 

execution. During the time hi is down, the execution 

of ai and consequently the entire mobile agent 

execution cannot proceed. Therefore, agent ai may 

suffer from a problem causing its execution to 

terminate abnormally. When ai crashed, then all the 

tasks done and all the results obtained by ai lost. The 

Fault Tolerant Mobile Agent execution System 

FTMAS motivates the work of the MA reliability. 

The execution proceeds after the crash of the agent or 

crash of the host smoothly and correctly by the use of 

replication. The worker agent leaves some replica (s) 

in its itinerary while moving from host to another. The 

number of replica(s) and status is different depending 

on the approach used. This is performed by proposing 

3 fault tolerant approaches: the Centralized, the 

Windowing of size-n and the Centralized Windowing 

approaches.  

The remainder of this paper is organized as 

follows: the next section  introduces the fault tolerant 

in MAs. Section 3 introduces the previous work while 

section 4 defines the FTMAS model. Section 5 

introduces the suggested FTMAS mathematical 

model. The conclusion is introduced in section 6. 

Finally, an appendix that contains the most important 

terminologies used in the paper is presented in section 

7 followed by the references. 

 

2. FAULT TOLERANT IN MOBILE AGENTS 

 

When fault does occur in a mobile agent system 

(MAS), interactions between agents may cause the 

fault to spread through the system randomly. These 

failures should not prevent the mobile agent from 

continuing its itinerary to achieve its goals as shown 

in figure 1. 

 

Figure 1. The Sate Diagram of the Agent Failure 

 

2.1 Fault Problem 
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There are several types of faults that can occur in 

agent environments. The most important are: the 

infrastructure failures and the semantic failures. The 

work concentrates on the infrastructure failure.  

 

Infrastructure Failures 

Machines, places or agents can fail and recover later 

[1]. When infrastructure failures are detected, then it 

is generally encapsulated into a failure detector 

module. This module is defined in terms of 

completeness and accuracy properties [1]. 

Completeness is satisfied when any failed process is 

eventually suspected. However, accuracy relates to the 

number of the false suspicions (i.e., processes that are 

suspected but have not crashed). The objective here is 

to limit these numbers to the minimum. 

 

 

3. PREVIOUS WORKS 

 

For the past few years, researchers and 

developers have put considerable efforts in the 

development of the basic technology for mobile 

agents. Most of these efforts are subject to the 

reliability of the MA – based applications. Hence, 

there are a lot of researchers’ efforts directed to work 

on fault tolerant approaches of MAs [2, 3,4, 5, 6, 7, 

and 8]. Two main works are highly related to our 

work: the work of Stefan Pleisch and the work of 

Wenyn Qu. Pleisch built FATOMAS as a fault 

tolerant MA execution prototype [1, 9, and 10].  

FATOMAS sends a set of replicas to a set of places in 

the next stage to prevent blocking of the agent 

execution. However, this produces the problem of 

multiple executions of the agent and so necessitates a 

solution to overcome this problem. Pleisch measures 

the performance of the FATOMAS on a single MA 

execution by measuring the effect of the agent size 

and the size of the replicas. However, Qu in [11, 12, 

and 13] works on the performance analysis for the 

fault tolerant MA execution. It assumes that online 

communication is maintained between the previous 

node and the current node hosting the agent. However, 

this contradicts the offline processing feature of the 

MAs. In [11, 12,  and 13] when the agent completes 

its execution at a node, then all its surveillances are 

killed. The problem arises when that agent is crashed 

before reaching to the final destination. Qu measures 

the performance using the migration time, life 

expectancy and population distribution of MAs for 

only one approach with general failure scenario. 

These factors are measured against the average 

network connectivity and the probability of failure. 

 

4. FTMAS Model 

The paper proposes a new execution model, 

FTMAS, which uses three proposed approaches to 

tolerate faults. The approaches are: the Centralized 

approach, the Windowing approach, and the 

Centralized Windowing approach. In addition, the 

FTMAS  introduces a novel classification of failures 

that the agent may suffer from during and after 

execution.. Theses classifications are applied in the 

proposed approaches in the FTMAS execution model 

to recover failures in all cases efficiently. 

 

4.1 FTMAS Execution Model 

A mobile agent executes on a sequence of 

machines/hosts, where a host h (1 < h < n) provides 

the logical execution environment for the agent in its 

life cycle. The main host, Main Container which runs 

a set of services represents the bootstrap point of a 

platform. Executing the agent at a host hi is called a 

stage si of the agent execution. The sequence of  nodes 

visited between the agent source and destination (i.e., 

h0, h1 h2 …. hn) composes the agent itinerary.  

The agents in the proposed system use dynamic 

itinerary, where there is no limit on the number of 

hosts to be visited by any agent. During the agent 

itinerary, it may visit several places according to the 

tasks assigned for each agent. For this work, the agent 

itinerary is not fully dynamic. The agent dynamically 

figures out the hosts before starting its itinerary. 

However, once it is started, then it will use static set 

of hosts to be visited. The visited hosts could be either 

remote hosts or local hosts to the agent platform. Once 

the agent completes its execution on a host hi, the 

agent commits its execution. This commitment is 

accomplished by performing the replication operation 

according to the used approach. The agent replicas are 

not executing while the original executing agent is 

active. Therefore, only one execution of the agent will 

be guaranteed at the same time. This property ensures 

the exactly once execution of the agents. The non-

blocking feature is also guaranteed even in the case of 

multiple failures by allowing the replica(s) of the 

crashed agent to replace it in order to continue 

execution even in case of agent failures.  

 

4.2 Variations of the Failure Problem 

The failure of the agent could happen after the 

updating of the agent replica(s), which is called 

optimistic failure. In this case, the agent commits its 

execution before crash. However, the failure of the 

agent could happen also before updating its replica(s), 

i.e., having uncommitted crashed agent, which in turn 

called pessimistic. In both cases the system should be 

able to tolerate faults successfully. However, it 

becomes a more complex and troublesome task to 

handle the pessimistic failures. 

 The paper suggests five novel failure cases for 

the agent ai while it is executing at host hi: 

Case 1: [Safe Case]: The agent successfully 

completes execution on host hi and moves safely to the 

next host, hi+1.  

Case 2: [Post-Failure - Optimistic]: The agent 

crashes or fails after committing its execution at host 

hi and before migrating to host hi+1.  

Case 3: [Post-Failure - Pessimistic]: The agent 

crashes or fails after completing execution at host hi 

but before committing its execution.  

Case 4: [Pre-Failure]: The agent crashes or fails 

before completing execution at host hi.  

Case 5: [Host Crash]: The host hi crashes. This case 

is treated as having the agent being crashed. This is 

because the crash of the host means the crash of the 
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operations, services and processes (agents) running 

on it. Case 5 could be combined with case 2, case 3 or 

case 4.  

 

5. FTMAS Proposed Approaches 

 

FTMAS model suggests three main proposed 

approaches: Centralized Approach “CA”, Windowing 

Approach “WA” and Centralized – Windowing 

Approach “CWA”.  

 

5. 1 Centralized Approach 

Any agent created  in any container, host, will be 

replicated in the main container. When the agent is 

migrated from any host to another, it commits its 

execution state by reflecting the changes to the replica 

in the main container. After crash, the replica is used 

to replace the crashed agent or crashed host with the 

most updated state of the crashed one.  

 

5 .2 Windowing approach 

This approach uses a snapshot window of the 

agent itinerary in order to recover that agent in case of 

failures. There are mainly two proposed techniques 

that could be applied. The first is to use the size -1 

window snapshot and the second is to use size – n 

window.  

 

A. Size-1 Approach 

When any agent is committed after executing at a 

host, then a replica of this agent is created in the 

previously visited host. After the agent is migrating to 

another host, then the hosting container will be the 

previous and so on. In this approach, a window of 

agent replica following the agent in its migration with 

size 1 is formed.  

 

B. Size-n Approach 

This approach is based on the same principle as 

that of the size-1 approach. However, the window of 

size-n approach uses a variable or a fixed size of n. In 

this approach, after the agent commits its execution, 

then a copy of this agent is created at the host hi 

before migrating to host hi+1. Every time the agent is 

migrated, a copy of that agent is created in the n 

previously visited hosts with a number of n replica(s). 

In case of agent crash, the agent's replica in the (n-1)
th

 

previously visited host in case that it is not crashed, is 

substituted the original agent by replicating it in the 

current host. Otherwise, i.e., if this (n-1)
th

 replica is 

crashed, the next previously agent's replica is used and 

so on.   

There are two options to perform the update of 

the replicas: full or partial update. For the full update, 

all the changes are reflected to all replicas once the 

agent committed its execution. However, for the 

partial update, only the replica in the last visited host 

would be the fully updated replica. Other replicas are 

partially updated at the time of their creation.  

 

5.3 Centralized-Windowing approach 

This methodology was an integration of the 

two previously mentioned approaches: the centralized 

and the windowing approaches. It is based on using a 

sliding window of size k, and a centralized replica in 

the main container at the same time. As long as the 

main container's replica is available so use it. 

Otherwise, switch to the sliding window replicas. This 

tries to gain the advantages of the two approaches in 

order to increase the reliability and the efficiency to 

tolerate faults.  

 

6. PERFORMANCE CALCULATION 

 

Suppose that LH(i) is the set of the neighboring 

hosts of the node hi. After the agent finishes executing 

in node hi, it travels to the first selected node, hi, in the 

LH(i) and executes there. This process will proceed 

repeatedly until the agent completes its execution 

successfully on all nodes in its itinerary.  

6.1 FTMAS Performance Parameters 

Four performance factors calculated: the 

Migration time MT, the Round trip time RTT, the 

transfer time TrT and the System throughput Th. The 

Migration time is defined as: “How long it takes for 

the agent to migrate from a pair of nodes (hi, hi+1) and 

commits its execution at hi”. The typical definition 

used for the Round Trip Time is: “How long it takes 

for the agent to migrate from a pair of nodes (hi, hi+1) 

and the source node, hi, got the acknowledgment for 

the successful migration to destination node hi+1”. 

The transfer time is defined as: “The time it takes to 

transmit or move data from one place to another. This 

time is dependent on the size of the data transfer and 

the rate at which it can be transmitted to/from the 

host”. Finally, the system throughput is defined as: 

“The average rate at which data is transferred 

through a system over a communication channel”. All 

these performance factors are calculated against: the 

average network connectivity “d”, which is the 

number of nodes in the agent itinerary; the probability 

of failure “ ρ “; and the agent size. 

 

6.2 Migration Time Calculations  

The Migration Time "MT" between host hi and 

the node hi+1 can be decomposed into travel time and 

execution time [11]. Suppose that the MT probability 

density function (pdf) is given by l(t), the travel time 

pdfs are given by r(t) and ir (t) respectively, and the 

execution time pdfs is given by e(t) [11]. When the 

probability distribution of travel time and execution 

time are known, then the probability distributions of 

MT is calculable [12]. Thus the MT for moving the 

agent from hi to hi+1, denoted by li, can be expressed 

as ∑
=

=

iv

j

ji ll

1

where vi denotes the number of nodes 

that are selected by the agent in LH (i).  

 

6.2.1 Windowing Approach of Size n 

 

1. Safe Case (Case 1) 

It states that no crash occurs either for the 

running agent or the hosting node. The agent will not 

die until it finds its destination. This means that the 

average MT of an agent is: 
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MA= r + e;            (1) 

 

2. Post-Failure – Optimistic (Case 2) 

In case that the explicit distribution of e, r and r
is known, the Laplace transform distribution of the 

MT, denoted by F*(s) can be expressed as: 

[ ] [ ]  )( )().()().()(

1

**1***
lvPsEsRsRsRsF i

d

l

l
i

==∑
=

−
       (2) 

The probability is computed by the inspiration of the 

work done in [12]. Where 1)1()( −−== l
i lvP ρρ  for 

idl ≤≤1  which is geometric distribution. Thus, 

probability distribution of MT can be easily gained by 

averaging Laplace transform of equation 3. 


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In case that the explicit distribution of execution 

time and travel time is unknown, we still can estimate 

the mean of MT if the means of execution time and 

travel time are available. Since li is independent to vi 

for ivl ≤≤1 [3]. Due to the fact that

i

iii

v
i

v

j

i
j
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v
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111

, then, the average 

MT of an agent satisfies:  
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3. Post-Failure – Pessimistic (Case 3) 

Let the event { }10

1 =X indicates that the agent 

on the j
th
 selected node fails before the agent commits 

its execution. Then the event {vi=l} gives the 

probability )( lvP i = equals }{ jvP i = which in 

turn gives: 

 )1()]1([)( 1 ρρρ −−== −j
i lvP  [11](5) 

Thus, if the explicit distribution of e, r and r is 

known, the Laplace transform distribution of MT is: 
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If the explicit distribution of e, r and r are 

unknown, and if we use x= )1( ρρ − , then average 

MT can be expressed as:  

rXdXX
x
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4. Pre-Failure (Case 4) 

The same sequence is done to recover the crashed 

agent as that done in post-failure – pessimistic case. 

 

5. Host Crash (Case 5) 

We have two scenarios: either to wait for the host 

recovery or not waiting for its recovery. 

 

Ignoring the recovery of the host 

In optimistic case and if the explicit distribution 

of execution time and travel time is known, the 

Laplace transform distribution of the MT can be as 

follows: 
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However, in pessimistic case, we have: 
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If explicit distribution of e and r is unknown, then 

in optimistic case, the average MT satisfies:  
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However, in pessimistic case, the average MT is:: 
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Waiting for the recovery of the host 

There is no need for discussing the optimistic 

case here because it doesn’t require any re-execution 

after the recovery of the host. The Laplace transforms 

distribution of the MT in pessimistic cases is: 
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If explicit distribution is unknown, the average 

MT: 

crXdXX
x
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6.2.2 Windowing Approach of Size 1 

The same calculation of the MT that is done for 

the windowing of size n approach is applied here. 

However, this is done with value of d=1. All these 

calculations are created, however, to summarize, we 

will not include these calculations in this paper.  

 

6.2.3 Centralized Approach 

The Centralized approach has the same 

calculations of that of the windowing of size 1 since 

we have one replica in the main container.  

 

6.2.4 Centralized -Windowing Approach 

Cki is used as a check time pdf to figure out 

whether to use the centralized approach or the 

windowing approach. Cki returns a value of υ  which 

is either equal to 1 or 0. It is used to test the 

availability of the main container’s replica. If the 

check returns value of 1, then the centralized approach 

is applied. Otherwise, the windowing approach is 

performed. 

 

1. Post-Failure – Optimistic 
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The Laplace transform distribution of the MT 

when the explicit distribution of e and r is known 

satisfies: 
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Otherwise, the average MT satisfies: 
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2. Post-Failure – Pessimistic / Pre-Failure 

The Laplace transform distribution of MT if 

explicit distribution of e and r is known satisfies:  
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Otherwise, the average MT satisfies: 
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3.  Host Crash 

 

When ignoring the recovery of the host 

For optimistic case and in case that explicit 

distribution of e and r is known, the Laplace transform 

distribution of MT is:  
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However, in pessimistic case it is: 
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If the explicit distribution is unknown, the 

average MT in optimistic case satisfies:  
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But, the average MT in pessimistic case satisfies: 
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Waiting for the recovery of the host 

The Laplace transform distribution of the 

migration time can be expressed as: 
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 (22) 

Otherwise, the average MT satisfies: 
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6.3 Round Trip Time Calculations 

 

6.3.1 Windowing Approach of Size n 

1. Safe Case 

For the safe case, the average RTT of the agent in 

its itinerary to accomplish its task successfully can be 

given by:    RTT = r         (24) 

 

2. Post – Failure / Pre - Failure Cases 

Optimistic case:  

The Laplace transform distribution of the round 

trip time satisfies: 









−

−

−
=

+1
**

**

**
*

))().(.(1.
)]().(.[1

)().()1(
)( i

d
sRsR

sRsR

sEsR
sF ρ

ρ

ρ
     (25) 

Otherwise, the average RTT satisfies: 

( ) rdrrlE d
d

i −













−

−

−
+= ρ

ρ

ρ

1

1
)(        (26) 

 

Pessimistic Case:  

The Laplace transform distribution of the RTT 

satisfies: 











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i
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ρ

   (27) 

In case that the explicit distribution of travel time 

is unknown, the average RTT satisfies: 

( ) rdxxx
x

rrlE
dd

i −













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−

−
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1
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2

ρ
   (28) 

3. Host Crash 

Ignoring the recovery of the host 

Optimistic Case: 

The Laplace transforms distribution of RTT is: 
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d
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In case that the explicit distribution of travel time 

is unknown, the average RTT satisfies: 


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
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
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−
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d
d
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Pessimistic Case 

However, for the pessimistic case, we have: 
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
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*
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In case that the explicit distribution of travel time 

is unknown, the average RTT satisfies: 
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
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−
= ])1(1[

)1(

1
)(

2

dd
i dxxx

x
rrttE
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  (32) 

Waiting for the recovery of the host 

For the pessimistic case, we have: 
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 (33) 

If explicit distribution of r is unknown, then: 
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6.3.2 Windowing Approach of Size 1 

The same calculation of the RTT that is done for 

the windowing of size n is performed for the 

windowing of size 1 approach. However, this 

accomplished by using the value of d=1. 

 

6.3.3 Centralized -Windowing Approach  

 

1. Post-Failure – Pre-Failure Cases 

Optimistic Case 

The Laplace transform of the RTT satisfies: 
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However, if the explicit distribution is unknown, 

the average RTT satisfies: 
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Pessimistic Case: 

The Laplace transform of the RTT is: 
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However, in case that the explicit distribution of 

travel time is unknown, the average RTT satisfies: 
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2. Host Crash 

 

Ignoring the recovery of the host 

The Laplace transform distribution of RTT can 

be expressed in optimistic case by:  
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In case that the explicit distribution of travel time 

is unknown, the average RTT satisfies: 
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However, for the pessimistic case we have:  

















































−−

+
−−

−+
−

+
−

−

=

))(*)(*)1(1

1))(*)(*)1((1

)1(
))(*)(*(1

1))(*)(*(1

)(*)1(

)(*

sCKsR

d
sCKsR

sCKsR

d
sCKsR

sR

sF

ρρ

ρρ

υυ

ρ

 (41) 

In case that the explicit distribution of travel time 

is unknown, the average RTT satisfies: 
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Waiting for the recovery of the host 

The RTT when the explicit distribution of the 

travel time is known can be expressed as: 
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Otherwise, the average RTT satisfies: 
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6.4 Transfer Time Calculations 

 

6.4.1 Windowing Approach of Size n 

1. Safe Case 

For the safe case, the average TrT of the agent in 

its itinerary to accomplish its task successfully can be 

given by:    CrTri +=         (45) 

 

2. Post – Failure / Pre - Failure Cases 

Optimistic case:  

The Laplace transform distribution of the transfer 

time satisfies: 

CsRsR
sRsR

sEsR
sTr i

d
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
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
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−
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Otherwise, the average TrT satisfies: 
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Pessimistic Case:  

The Laplace transform distribution of the TrT 

satisfies: 

C
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i
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In case that the explicit distribution of travel time 

is unknown, the average TrT satisfies: 
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3. Host Crash 

Ignoring the recovery of the host 

Optimistic Case: 

The Laplace transforms distribution of TrT is: 
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In case that the explicit distribution of travel time 

is unknown, the average TrT satisfies: 
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Pessimistic Case 

However, for the pessimistic case, we have: 

( ) CsR
sR

sR
sF i

d
+





−−

−−

−
=

+1*

*

*
* )()1(1.

)()1(1

)()1(
)( ρρ

ρρ

ρ
  (52) 

In case that the explicit distribution of travel time 

is unknown, the average TrT satisfies: 
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Waiting for the recovery of the host 

For the pessimistic case, we have: 
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If explicit distribution of r is unknown, then: 
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6.3.2 Windowing Approach of Size 1 

The same calculation of the TrT that is done for 

the windowing of size n is performed for the 

windowing of size 1 approach. However, this 

accomplished by using the value of d=1. 

 

6.3.3 Centralized -Windowing Approach  

1. Post-Failure – Pre-Failure Cases 

Optimistic Case 

The Laplace transform of the TrT satisfies: 
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However, if the explicit distribution is unknown, 

the average TrT satisfies: 
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Pessimistic Case: 

The Laplace transform of the TrT is: 
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However, in case that the explicit distribution of 

travel time is unknown, the average TrT satisfies: 
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2. Host Crash 

Ignoring the recovery of the host 

The Laplace transform distribution of TrT can be 

expressed in optimistic case by:  
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In case that the explicit distribution of travel time 

is unknown, the average TrT satisfies: 
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














−++= ρ

ρ

ρ
υρυ

-1

-1
)-(1  )-(1 ) )(

d

   (61) 

However, for the pessimistic case we have:  
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d

d
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


















−−

−−
−

+
−

−

−=
+

+

))()()1(1

))()()1((1
)1(

))()((1

))()((1

)()1()(

**

1**

**

1**

**

ρρ

ρρ
υ

υ

ρ   (62) 

In case that the explicit distribution of travel time 

is unknown, the average TrT satisfies: 

Cck

XX
x

XdXX
x

ckrlE

dd

i

+−





















+−
−

−

+−−−
−

−
−

+=

]21[
)1(

1

].).1(1[
)1(

1
)1(

)()(
2

2

2

ρ
υ

ρ
υ

 (63) 

 

Waiting for the recovery of the host 

The TrT when the explicit distribution of the 

travel time is known can be expressed as: 

C

sCrsCKsR

sCrsCKsR

sCrsCKsR

sCrsCKsR

sRsF

d

d

+























−−

−−
−+

−

−

−=

+

+

))()()()1(1

))()()()1((1
)1(

))()()((1

))()()((1

)()1()(
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1***

***

1***

**

ρρ

ρρ
υ

υ

ρ

  (64) 

Otherwise, the average RTT satisfies: 

Ccrck
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




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
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
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+−
−

−
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−
−
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]21[
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1
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)1(

1
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2

2

2

ρ
υ

ρ
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  (65) 

 

5.5 System Throughput Calculations 

The system throughput calculations are done in 

the same manner as those done for the previous 

performance factors, and since it is equal to: 

( )TrSizeTrThr ii =
       (66) 

BWTrSize
RTTThr ii

11
. +=

      (67) 

12. ccRTTThr ii +=
      (68) 

Then, for simplicity, we will not mention them here. 
 

 

 

7. CONCLUSION 

 

The novel mathematical model of the FTMAS is 

proposed. The paper states and defines the equations 

of the migration time, the Round trip time, the transfer 

time and the system throughput. These performance 

factors were defined relative to 3 performance 

metrics: the average connectivity of the network, the 

agent size and the probability of failure. The 

mathematical model of the FTMAS is stated as a 

promising model in the fault tolerant field of the 

mobile agent execution. In addition, the paper defined 

the equations of the novel failure classifications in 

terms of the performance factors and the performance 

metrics for each classified case. FTMAS model is to 

be analyzed and proven later. 
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